─. 출처 1: Complete market (위키피디아: https://en.wikipedia.org/wiki/Complete_market)
In economics, a complete market (aka Arrow-Debreu market or complete system of markets) is a market with two conditions:
- Negligible transaction consts and therefore perfect information,
- There is a price for every asset in every possible state of the world [주]2
In such a market, the complete set of possible bets on future states-of-the-world can be constructed with existing assets without friction. Here goods are state-contingent; that is, a good includes the time and state of the world in which it is consumed. So for instance, an umbrella tomorrow if it rains is a distinct good from an umbrella tomorrow if it is clear.
The study of complete markets is central to state-preference theory. The theory can be traced to the work of Kenneth Arrow (1964), Gérard Debreu (1959), Arrow and Debreu (1954) and Lionel McKenzie (1954). Arrow and Debreu were awarded the Nobel Memorial Prize in Economics... largely for their work in developing the theory of complete markets and applying it to the problem of general equilibrium.
A state of the world is a complete specification of the values of all relevant variables over the relevant time horizon.
- A state-contingent claim, or state claim, is a contract whose future payoffs depend on future states of the world. For example, suppose you can bet on the outcome of a coin toss. If you guess the outcome correctly, you will win one dollar, and otherwise you will lose one dollar. A bet on heads is a state claim, with payoff of one dollar if heads is the outcome, and payoff of negative one dollar if tails is the outcome.
- "Heads" and "tails" are the states of the world in this example. A state-contingent claim can be represented as a payoff vector with one element for each state of the world, e.g. (payoff if heads, payoff if tails). So a bet on head can be represented as ($1, -$1) and a bet on tails can be represented as (-$1, $1). Notice that by placing one bet on heads and one bet on tails, you a state-contingent claim of ($0, $0); that is, the payoff is the same regardless of which state of the world occurs.
The bet on a coin toss is a simplistic example but illustrates widely applicable concepts, especially in finance.
- If markets are complete, it is possible to arrange a portfolio with any conceivable payoff vector. That is, the state claims available for purchase, represented as payoff vectors, span the payoff space.
- A pure security or simple contingent claim is a state claim that pays off in only one state.
- Any state-contingent claim can be regarded as a collection of pure securities.
- A system of market is complete if and only if the number of attainable pure securities equals the number of possible states.
Formally, a market is complete with respect to a trading strategy, ^s^, if there exisits a self-financing trading strategy, ^s0^, such that at any time ^t^, the returns of the two strategies, ^s^ and ^s0^ are equal.
This is equivalent to stating that for a complete market, all cash flows for a trading strategy can be replicated using a similar synthetic trading strategy.
- Because a trading strategy can be simplified into a set of simple contingent claims (strategies paying 1 in one state and 0 in every other state), a complete market can be generalize das the ability to replicate cash flows of all simple contingent claims...
─. 출처 2: https://wikidocs.net/20133
먼저 1-period 이항 모델(binomial model)을 살펴보고 2-period와 n-period 이항 모델을 생각해 본다. 그리고 n이 무한대로 커질때 그 극한이 블랙숄즈 모델로 수렴하는 것을 확인할 것이다. 이항 모델은 state-contingent claim, 위험중립확률, 델타헤징, 셀프 파이낸싱 같은 파이낸스의 핵심적인 개념들을 이해하는 데에 큰 도움이 되기 때문에 중요하다...
이 논의를 조금 더 일반화해서 Arrow-Debreu security에 대해 살펴보자...
이러한 단위 페이오프를 만드는 state-contingent claim 증권을 최초[로] 찾아낸 사람의 이름을 따라 Arrow-Debreu security 또는 Arrow security라고 부른다. 모든 옵션의 페이오프는 Arrow security를 적절히 결합하면 얻을 수 있기 때문에 아주 편리한 개념이다.
─. 출처 3: IM&F 시리즈 15, 금융공학 V. Introduction to Financial Engineering with R (최병선 지음, )
http://s-space.snu.ac.kr/bitstream/10371/99003/1/FE5Total_2016Dec28.pdf
금융공학의 공학(engineering)이라는 단어에서 연상되듯이, 금융공학의 주된 목적 중 하나는 시장에서 거래되는 금융상품들을 조립해서 새로운 금융상품을 만드는 것이다. 이러한 조립 과정을 살펴보기 위해서 먼저 Arrow-Debreu 증권이라고도 불리는 상태 증권(state security)을 생각해보자.
상태 증권은 미래 어떤 시점에서 정해진 상태(state)가 발생했을 때, 그리고 그 상태가 발생했을 때에 한해서 1원을 지불하는 증권이다...
경제학에서와 달리 금융공학에서 금융상품의 합리적 가치를 결정하는 데는 수요공급이론을 사용하지 않는다. 대신에, 시장에 재정기회가 존재하지 않는다는 무재정 조건(no arbitrage condition)을 사용한다. 무재정 조건을 '비즈니스 세계에서 공짜 점심은 없다'라는 말로 표현하기도 한다. 앞서 언급했듯이, 재정기회가 존재하지 않는다는 것은 동일한 수익률과 동일한 위험을 지닌 금융상품들의 가격은 동일한다는 것이다. 좀 더 좁은 의미에서 말하면, 재정기회가 존재하지 않는다는 것은 위험을 감수할 각오를 하지 않으면서 확실한 이득을 얻을 수 있는 기회가 없다는 것이다...
금융자산 가치평가에서는 언뜻 보기에 추상적이지만 지극히 현상적인 개념이 하나 필요하다. 이것은 시장 상태(state of the world), 경제 상태(economic state) 또는 간단히 상태(state)라 부를 것으로, 금융자산 가치평가에서 매우 중요한 역할을 한다. 이 장에서는 금융시장에 상태들이 S개 존재한다고 가정하고, 가능한 상태들 w(1), w(2), ..., w3(S) 나타내는 상태 벡터를 다음과 같이 정의하자...
여기서 S는 유한임을 기억하라. 이 상태들 w(1), w(2), ..., w3(S)는 상호배타적이며, 또한 각 시점에서 이들 중 하나가 반드시 발생한다. 따라서 상태는 확률 공간에서 정의되는 기초 사건(elementary event)에 해당한다...
미래 시점의 각 상태에 따라 각 금융자산의 미래시점가치(payoff)가 다르다...
<따름정리 4.2.3>의 S개 포트폴리오들 ...을 순수 증권들(pure securities) 또는 상태 증권들(state securities)이라 부른다. 또한 노벨경제학상을 받은 Kenneth Arrow와 Gérard Debreu의 이름을 따서 Arrow-Debreu 증권들이라 부르기도 한다. 완비시장에서는 어떤 증권이든 이 S개 상태 즈권들의 일의적 포트폴리오로 나타낼 수 있다. 따라서 완비시장 모형에서 본질적인 증권은 이 S개 상태 증권들이다...
금융파생상품(financial derivative) 또는 조건부 청구권(contingent claim)이란 그 가치가 기본자산 또는 원자산(underlying)이라 불리는 특정 금융자산이나 금융자산의 지불금액 함수로 정의되는 계약이다.
─. 출처 4: Matthew Brigida, PhD. Associate Professor of Finance, Clarion University of Pennsylvania, "What is a Complete Market?" 2008.
http://complete-markets.com/2008/08/what-is-a-complete-market/
First, define a contingent claim as a financial contract with a random payoff that is free to take both positive or negative values. The random payoff is 'determined by (i.e., contingent on)' the state of the world that occurs in the future. An option is an example of a contingent claim.
Next, in order to price this contingent claim we may replicate the payoff of the contingent claim in all future states of the world using a portfolio of securities available in the market.[주]* In the case of replicating an option we may use the risk free security and the underlying stock. Note, if the replicating portfolio and the contingent claim have the same payoff in all future states of the world, the replicating portfolio must have the same price as the contingent claim. Finally, we define a complete market as a market wherein any contingent claim can be replicated with a portfolio of existing securities.
... In order to derive their option pricing model, Black and Scholes created a riskless portfoloio consisting of the option and the underlying stock. The change in the stock price is offset perfectly by the change in the option price (through delta hedging). Because we assume there is no arbitrage in the market, this riskless portfolio must earn the risk free rate. Setting the option and stock portfolio equal to the risk free rate allows us to solve for the option price. Note, the stock and option portfolio only riskless for a short period of time and therefore must be adjusted continuously. In fact, consider the Black-Scholes world where there exists alone in a market two primitive securities, one security whose price process is a geometric Brownian motion and a risk free security. This market is complete.
To give you a general idea of what may be required for a market to be complete, we can prove that in a single period market (there is only t=0 and t=1) with K states of the world when t=1, we need at least K securites for the market to be complete.
댓글 없음:
댓글 쓰기